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We’ve Monitored Bioretention 

Hydrology… 

77% 

Impervious 

• At three cells in northeast Ohio 
− Clayey underlying soils 

− Internal water storage zones 

− Ohio media specification 

− Different planting palettes 
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But, what about… 

• All of the thousands of other possible 

design configurations?  

− Media characteristics 

− Underlying soil Ksat 

− IWS depth 

− Media depth 

− Loading Ratio 

− Plants 

− Changing Climate 



Food, Agricultural, and 

Biological Engineering 

Long-Term Model Needed 

• Quantify bioretention 

hydrology for various 

design configurations 

• Long-term water 

balance (treated 

drainage, untreated 

overflow/bypass, 

exfiltration/groundwater 

recharge) 
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Bioretention Models 

• Many are single storm 

• Do not incorporate IWS 

zone as a design feature 

• Some current models do 

not accurately model 

underdrain flow for 

typical designs 

− Elementary drain 

calculation or only 

have 1 drain 
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What is DRAINMOD? 
• Long-term Agricultural Drainage Model 

• Developed in 1980s by Dr. R. Wayne 

Skaggs (N.C. State University) 

• The USDA model for flat land, shallow 

water table applications 
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DRAINMOD Applications 
• Ag drainage systems 

• Controlled drainage 

• Subirrigation 

• Wetland hydrology 

• Nitrogen dynamics and losses from drained 

soils 

• Impacts of drainage system and irrigation 

management on soil salinity in arid regions 

• On-site wastewater treatment 
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Bioretention Modeling in DRAINMOD 

• Concepts of water movement in BRCs are 

very similar to Ag. fields with drain tiles 

• Most bioretention design specifications 

correspond directly to DRAINMOD inputs 
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Bioretention Diagram 
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Why DRAINMOD? 

1. Runs continuous, long-term simulations 

• Accounts for antecedent moisture 

conditions 

• 30 years or more 

2. Drain calculations are based on 

Kirkham’s Eqn. & Hooghoudt Eqn. 

3. Calibrated from actual bioretention cells 

with underdrains 

4. Models IWS zone configuration 
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Biggest Benefit of DRAINMOD 
5. DRAINMOD predicts water stored in media/soil 

based on water table depth and soil-water 

characteristic curve 
 

• All other BRC models use field capacity when soil 

is not saturated 

• Field capacity is not a soil water constant. More 

valid approximation in deep, well drained soils 
− Smith, R.E., and A.W. Warrick (2007). “Chapter 6: Soil Water 

Relationships” Design and Operation of Farm Irrigation Systems, 2nd 

Edition. ASABE, St. Joseph, Mich.  

• Invalid when water table is close to the surface 
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Soil-Water Characteristic 
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Calculating Water Stored in Profile 

• Standard Ohio Bioretention Media 

• Water Table Depth = 2 ft 
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where  ΔVa = change in air volume (cm) 
 D = lateral drainage from section (cm) 
 ET = evapotranspiration (cm) 
 DS = deep seepage (cm) 
 F = infiltration entering the section in Δt 
 
*Calculated on an hourly basis 
 

DRAINMOD Water Balance 

∆𝑉𝑎 = 𝐷 + 𝐸𝑇 + 𝐷𝑆 − 𝐹 
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Uses for DRAINMOD Outputs 

• Evaluate hydrologic performance based 

on a number of design parameters and 

site conditions 

• Creates an annual water balance  

• Used to estimate effluent pollutant load 

• Quantifies: 

• Groundwater recharge 

• Percent of runoff infiltrating into the 

specialized media (“treatment”) 
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Modeling Bioretention Hydrology 

1. Contributing runoff from parking lot 

2. Utilities 

− Contributing Runoff 

− Weather (Temperature & Rainfall) 

− Soil 

3. Enter BRC design characteristics 

− Drain depth & spacing 

− Soil layers (Ksat, depths) 

− Subsoil characteristics (seepage) 
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Soil 

• Measured:  

− Soil Water Char. Curve  

•  Tension table (pressure plate) 

− Ksat 

•  Const. head permeability test 

 

• DRAINMOD Soil Prep. Program: 

− Water Table – Vol Drained – Upward Flux 

− Green-Ampt Infiltration parameters 
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Weather Files 

• DRAINMOD inputs: 

− Daily maximum air temperature 

− Daily minimum air temperature 

− Hourly rainfall depth 

• Measured at each site (weather station) 
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Potential Evapotranspiration (PET) 

• PET can be user-supplied, or the model 

uses the Thornthwaite method 

− Not as precise as other methods 

− Fewest inputs  mean monthly air temp.   

− Heat index (I) 

• Ti is the mean monthly temp. 

− Degrees Celsius 

− Daily PET values were estimated using the 

daily maximum and minimum temperatures 

and the calculated heat index. 
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DRAINMOD Outputs:  

Water Balance 

DRAINMOD Outputs Potential Meaning for Bioretention 

ET Evapotranspiration  

(volume eliminated) 

Drainage Underdrain flow volume  

(treated volume) 

Runoff Overflow volume  

(untreated volume) 

Seepage Exfiltration  

(volume eliminated) 
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Calibration Methods 
1. Site specific surveys 

− Catchment area 

− Surface area & average ponding depth  

− Media depth & soil-water characteristic curve 

− Gravel & sand layer depths 

− Underdrain depth, spacing, and radius 

− Internal water storage zone depth  
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Calibration Methods 
2. Measured water level  

− In media (at midpoint between drains) 

3. Measured / estimated flow volumes 

− Runoff (estimated) 

− Drainage (measured) 

− Overflow (measured) 

− Exfiltration/ET (measured) 
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Calibration and Validation 

• Calibration Period 

− Storms during even months 

• Validation Period 

− Storms during odd months 
 

• Brown et al. (2013) – split data set into first & 

second halves 

− Believe this even/odd months better 

captures seasonal variations in 

performance 
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Quantifying Agreement 
• Percent difference between predicted and 

measured volumes 

• Coefficient of determination (R2) 

− 1.0 perfect agreement 

• Nash-Sutcliffe Coefficient 

− 1.0 perfect agreement 
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Modeling Parking Lot Runoff 

• Create soil file for asphalt 

− Adjust Green-Ampt infiltration parameters 

• Wide drain spacing 

• Small surface storage (Sm) 

− Vary depending on surface cover 
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Nash-Sutcliffe Coefficients for Runoff/Inflow 

Monitoring 

Period 
Ursuline 

Holden 

South 

Holden 

North 

Calibration 0.99 0.99 0.99 

Validation 0.99 0.96 0.96 

• Modeled pervious and impervious portions of each 

watershed separately 

• Summed results of these models to determine 

runoff/inflow 

• Improved calibration vs. lumped pervious/impervious 

runoff model 
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Calibration of Runoff/Inflow: 

Holden North 

y = 0.9986x + 0.2672 
R² = 0.9819 
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UC: Overall Water Balance 
Measured vs. Modeled 
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HA South: Overall Water Balance 
Measured vs. Modeled 
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HA North: Overall Water Balance 
Measured vs. Modeled 
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Model Agreement 
*Nash-Sutcliffe Coefficients during Validation Periods 

Hydrologic 

Fate 
Ursuline 

Holden 

North 
Holden 

South 

Runoff 0.99 0.96 0.96 

Drainage 0.98 0.98 0.95 

Overflow 0.73 0.74 0.71 

Exfiltration/ET 0.95 0.76 0.75 
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Modeled vs. Measured Water 

Balance 

*Percent of Total Inflow 

Type of 

Data 
Hydrologic 

Fate 
Ursuline 

Holden 

North 
Holden 

South 

Monitored 
Drainage 

33 51 57 

Modeled 33 52 56 

Monitored 
Overflow 

8 7 7 

Modeled 9 8 9 

Monitored 
Exfiltration/ET 

59 42 36 

Modeled 58 40 35 
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Adjusting Design Parameters: 

Analysis of Design Alternatives  
(UC Data) 

How is the long-term water balance 

affected by: 
− Underlying Soil Ksat 

− Media depth 

− Internal Water Storage Zone Depth 

− Rooting Depth 

− Bowl Storage Depth 

− Hydraulic Loading 
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Weather Sources: Modeling 
• Long-term Weather Station 

− Cleveland Hopkins International Airport            

(40 miles from Holden Arboretum) 

• Primary weather source for simulations 

• Long-term data range: 1983-2012  

• (30 yr simulations) 

− Daily Max. & Min. Temperature  

• Source: NOAA - NCDC 

− Hourly Rainfall  

• Source: NOAA - NCDC 
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Base Models for UC 
• Media Depth: 2 ft 

• IWS Zone: 2 ft 

• Loading Ratio: 20:1 

• Rooting Depth: 1 ft 

• Bowl Depth: 1 ft 

• All values matched 

as-built 

• DRAINMOD output - 

long-term hydrology: 

• Inflow 

• Drainage 

• Overflow 

• Exfiltration/ET 
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Base Models 

• Four baseline created based on 

conductivity of the underlying soil (vertical 

seepage tab in DRAINMOD) 

− Ksat = 0.5 in/hr 

− Ksat = 0.2 in/hr 

− Ksat = 0.05 in/hr 

− Ksat = 0.02 in/hr 
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Underlying Soil Ksat 
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Underlying Soil Ksat 

• Supports locating most permeable soils on a 

development site 

Volume Reduction 
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Underlying Soil Ksat 

• Prioritize SCMs over soils with higher 

hydraulic conductivities 

− 41% volume reduction for Ksat = 0.02 

in/hr (heavy clay) – includes IWS 

zone 

− Bioretention SCMs still provide a 

volume mitigation benefit in even the 

poorest soils 

− Percentage of overflow and drainage 

increases as Ksat decreases 
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Over/Under-Sized Bioretention 
• Ohio design event =0.75 inches 

• Catchment Area : Bioretention Area Ratio 

− 10:1 

− 15:1  

− 20:1 (base model) 

− 35:1 

− 50:1 

• Changed field ratio in                               

DRAINMOD 
 

Catchment 
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Over/Under-Sized Bioretention 

• Only factor that substantially changes ET 

(more/less plants in BRC) 

• As HLR increases, we observe: 

− More overflow 

− More drainage 

− Less exfiltration 

− Less ET 

• Differences exacerbated as underlying soil Ksat 

approaches zero 

Variable credit for 

volume reduction as 

a function of sizing? 
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Media Depth 

2, 3, and 4 ft 
Major cost 

factor 

~$15 ton 
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• Media depth only a critical factor when there are 

concomitant increases in IWS zone depth 

• Deeper media depth important for treatment of pollutants 

(temperature, nitrogen) 
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Media Depth 

Small changes in long-term hydrology compared to past 

studies.  Perhaps because model calibrated to poor soils? 

Nashville, NC Modeling 
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Internal Water Storage 
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Internal Water Storage 

• Modeled IWS zone depths of: 
− 0 inches (flat underdrain) 

− 6 inches 

− 12 inches 

− 15 inches (baseline model) 

− 18 inches 

− 24 inches 
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Internal Water Storage 

• By incorporating optimal 15-18 inch IWS zone 

in sandy soil: 

− Reduce drainage and increase exfiltration by 20% 

− No change in overflow 

• By incorporating optimal 15-18 inch IWS zone 

in heavy clay soil: 

− Decrease drainage by ~25-30% and increase 

exfiltration ~3-fold 

− Modestly increase overflow (~1-2%)  

• No modeled change to ET due to IWS zone 
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Rooting Depth 

 

Very modest 

changes to all 

portions of the 

water balance 

(i.e., <0.2%) 
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Bowl Storage Depth 

9, 12, 15, 18, and 24 inches 
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• Bowl storage depth had very little impact on volume 

reduction 

• However, deeper bowl storage depths did result in 

reduced volumes and occurrences of overflow 
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Percent Change in Performance 

(0.05 in/hr underlying soil Ksat) 
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Lessons Learned 

• 3 biggest factors: underlying soil conductivity, 

loading ratio, presence of IWS  

• Sensitivity of Model: 

− Moderate: Bowl storage, media depth* – 

mainly affect overflow 

− Least: Rooting Depth 
 

*important when IWS depth also increases 
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Lessons Learned 

• Incorporation of an IWS zone (15-18” 

optimal) has greater impact as soil Ksat 

decreases 

• Bowl storage has little impact on volume 

reduction but does reduce overflow 

• Loading ratio is critical 

− Undersized systems will have large 

amounts of overflow and increased 

maintenance burden 
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Questions? 
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Influence of Design Alternatives 

on Permeable Pavement 

Hydrology in NE Ohio 
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DRAINMOD: A new 

application 
• DRAINMOD 

– Agricultural drainage model 

• Other applications 

– Wetland Hydrology 

– Nitrogen transport 

– Bioretention (Brown et al. 

2013, Winston et al. 2016) 

• Potential use for 

modeling permeable 

pavement 

– Primary hydrologic 

mechanisms 

• Exfiltration 

• Drainage 

 

 

 

Brown, R.A., R.W. Skaggs, and W.F. Hunt. (2013). “Calibration and validation of 
DRAINMOD to model bioretention hydrology.” Journal of Hydrology. 486, 430-442. 
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DRAINMOD: Drainage Inputs for PP 
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Modeling PP with DRAINMOD 

• Model parking lot runoff,  

input PP design 

characteristics 

• Calibration methods similar 

to bioretention (Brown et al. 

2013, Winston et al. 2016) 

• Calibrate on even months, 

validate on odd months 

– Captures seasonality of full 

year 

Evaporation 

Surface 
Runoff 

Drainage 

Exfiltration 

Brown, R.A., R.W. Skaggs, and W.F. Hunt. (2013). “Calibration and validation of 
DRAINMOD to model bioretention hydrology.” Journal of Hydrology. 486, 430-442. 
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Calibration Methods 
1. Site specific inputs 

– Contributing run-on area 

– Infiltrative surface area of permeable pavement 

– Aggregate depth + water retention curve of 

aggregate 

– Drain pipe depth, spacing, and radius 

– Internal water storage zone depth  
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Pavement Surface 
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Calibration Methods 
2. Measured water level  

– Compare to daily output in DRAINMOD 

– Measures exfiltration/evaporation rate for deep seepage 

3. Measured / estimated flow volumes 

– Drainage (measured) 

– Surface Runoff (measured/negligible) 

– Inflow (estimated by Curve Number Method) 

– Exfiltration/evaporation (measured cumulatively) 
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Monitoring Methods 

Internal Water Level 

Surface Infiltration 
(ASTM C1707M) 

Underlying Soil 
Characteristics 

Drainage 
Outflow 
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WILLOUGHBY HILLS 

PERKINS TOWNSHIP 
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Site Characteristics 

Site Soil Type 
Pavement Type 

(Drainage 
Configuration) 

Impervious 
Run-on Ratio 

Average 
Measured 
Drawdown 

Rate  

Data 
Collection 

Period 

Perkins 

Township, OH 

Silty Clay 

Loam 

Permeable 

Concrete (IWS) 
4.8 : 1 0.02 in/hr 

Apr. 2013-
Nov. 2014 

Willoughby 

Hills, OH 

(Large) 

Fill PICP (IWS) 2.2 : 1 0.01 in/hr 
Oct. 2013- 
Nov. 2014 

Willoughby 

Hills, OH 

(Small) 

Fill PICP (IWS) 7.2 : 1 0.01 in/hr 
Oct. 2013- 
Nov. 2014 
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Perkins: Cumulative Volume 
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Date 
Estimated Inflow Modeled Inflow
Measured Drainage Modeled Drainage
Measured Exf/Evap Modeled Exf/Evap
Measured Surface Runoff Modeled Surface Runoff

% of Water 
Balance 

Drainage 
Surface 
Runoff 

Exf./Evap. 

Monitored 47 0 53 

Modeled 47 2 51 
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Cumulative Volume Results 
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Modeled vs. Measured Water Balance 
*Percent of Total Inflow 

Type of 

Data 

Hydrologic 

Fate 

Perkins 

Township 
WH Small WH Large 

Monitored 
Drainage 

47 74 44 

Modeled 47 75 42 

Monitored 
Surface Runoff 

0 8 
24 

Modeled 2 8 

Monitored Exfiltration and 

Evaporation 

53 18 32 

Modeled 51 17 34 

 Nash-Sutcliffe exceeded 0.75 for inflow 

and drainage 

 Cumulative volumes predicted to 

within 8% for all sites 

 Components of water balance 

predicted to within 2% for all sites 
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Design Alternative Analysis 

How is the long-term hydrologic fate 

affected by: 

  

– Underlying Soil Ksat 

– Aggregate depth 

– Internal Water Storage Zone 

– Run-on ratio  
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Baseline Models 
• Four baseline models created based on 

conductivity of the underlying soil 

Evap. Surface Runoff 

Drainage 

Exfiltration 

– Ksat = 0.5 in/hr 

– Ksat = 0.2 in/hr 

– Ksat = 0.05 in/hr 

– Ksat = 0.02 in/hr 

• 30-years of rainfall 

and temperature 

• Completed for each 

site and typical 

design in OH (2:1 

run-on ratio) 
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Underlying Soil Ksat 
• WH Large, 2.2:1 run-on ratio, 24 inch agg. depth, 6 in. of IWS 
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Design Alternative Analysis 

• Pavement + aggregate depth 

– 9 in, 12 in, 18 in, 24 in, 36 in 

• Internal Water Storage zone depth 

– 0 in, 6 in, 12 in 

• Contributing Drainage Area : PP Area 

– None, 1:1, 2:1, 3:1 
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For HSG D soil: 18 inches – appx. 1% surface runoff 

• WH Large, No IWS, 0.02 in/hr infiltration rate 
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Exfiltration Evaporation Surface Runoff Drainage

Effect of Pavement + Aggregate Depth 

For HSG B soil: 18 inches < 1% surface runoff 

• WH Large, No IWS, 0.50 in/hr infiltration rate 
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Effect of Pavement +  

Aggregate Depth 

• Most sensitive output: Surface Runoff  
• Less pronounced as infiltration rate, IWS 

increases 
• 12 - 18 inches probably adequate for 

meeting most structural and hydrologic 
needs 
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Design Alternative Analysis 

• Pavement + aggregate depth 

– 9 in, 12 in, 18 in, 24 in, 36 in 

• Internal Water Storage zone depth 

– 0 in, 6 in, 12 in 

• Contributing Drainage Area : PP Area 

– None, 1:1, 2:1, 3:1 
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Effect of Internal Water Storage 

Adding 6 inches of IWS increases volume reduction by 15% 

• 0.50 in/hr infiltration rate 
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Effect of Internal Water Storage 

12 inches of IWS required to mimic volume reduction 
from 0.50 in/hr without IWS 

• 0.02 in/hr infiltration rate 
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Ohio Standard Design (2:1 Run-on Ratio) 
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Effect of Internal Water Storage 

• Most sensitive output: Drainage and 
Exfiltration  

• Little effect on overflow and evaporation 

• Marginal returns as infiltration rate increases 

• 12 inches of IWS maximizes 
exfiltration/evaporation, minimizes outflow 
(drainage + overflow) 

• Greatest impact from increasing IWS observed 
for lowest infiltration rates (0.02 in/hr, 0.05 
in/hr) 
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Effect of Run-on Ratio 
• 6” IWS zone, 24” agg. depth, and 0.02 in/hr 

Surface Runoff 

Drainage 

Exfiltration 

Evaporation 



www.bae.ncsu.edu/stormwater 

0

20

40

60

80

100

0.0 1.0 2.0 3.0 4.0

P
e

rc
e

n
t 

o
f 

R
u

n
o

ff
 (

%
) 

Run-on Ratio 

Exfiltration Evaporation Drainage Overflow

Effect of Run-on Ratio 

Increasing CA has less effect on high inf. rate soils 
…but increases susceptibility to clogging 

• 6” IWS zone, 24” agg depth, and 0.50 in/hr 
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Effect of Run-on Ratio 

• As contributing area increases, clogging 
susceptibility increases, increased need for 
maintenance 

• Balance between maximizing performance 
and cost-effectively treating watershed 
area 

• Best option? Route roof  
   runoff directly into  
   aggregate subbase 
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Design Alternative Analysis 

Summary 

1) Flexible design options for “better” 

underlying soils 

2)  IWS increases “bang for your buck”  

3) Targeted design improves volume 

reduction for PP over low infiltration 

soils  
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Questions? 


